
 1

7.

Hacking

Finn Brunton

Hack. The word is a noun, a verb, an adjective. It is a professional title and a criminal indictment

and a celebration and a pejorative. It is applied to developing software, exploiting software,

collecting data, manipulating social networks, working for and against companies, for and

against governments, making nice things and being the reason we can't have nice things. Obama

dismissively referred to Edward Snowden as ‘some hacker’ - an outsider exfiltrating data by

exploiting technology, without the moral role of the whistleblower - while his administration

hosted ‘civic hackathons’ and promoted a ‘culture of hacking’. Facebook fought the threat of

‘hacking Facebook’ (manipulating metrics or collecting information on their users) while hiring

‘hackers’ (virtuosic, inventive coders) and celebrating ‘the Hacker Way’: ‘an approach to

building that involves continuous improvement and iteration’ (Zuckerberg 2012). A hack can

colloquially mean a brilliant, elegant, lateral solution to a programming challenge, or a crude,

good-enough fix in the context of constant development - ‘move fast and break things,’ to take

another Facebook credo. Hacking has been closely connected with the creation of the culture,

technology, and philosophy of free and open source software, and with the secretive

manipulation of national elections. How can these many meanings be reconciled?

In this chapter, I will assemble what I argue are the most significant meanings of this term

through a vocabulary of actions. Using both accounts of self-professed hackers, and assembling

the literature of the study of hacking, I argue that hacking is best understood as a distinct

 2

technological way of being in the world, which we can see most clearly in a set of practices

around the making, breaking, and sharing of tools, machines, communities, and systems.

Following this structure of actions avoids the confusion of this overapplied term, side-stepping

the merely pejorative or vacuously positive, and helps us see what it is that hacking consistently

means. By identifying and grouping research into hacking by types of action we can see hacking

outside computing and telecommunications: in biotechnology, law and policy, the creation and

management of spaces and communities, even philosophy and cooking. The rest of this chapter

will organize our approach to hacking around eight different components of the hacker

vocabulary of action: getting and giving access; tinkering and reverse engineering; recursive

tooling; commoning; making nonstandard things; performing virtuosity; defining and policing

hackerdom; and social engineering. Not every hacker engages in every one or even most of these

forms of action. Some were more prevalent at one time than another. Some blur a bit from one to

the next but have unique, distinctive traits. Together, these constitute the action, the doing, that

makes hacking what it is.

Getting and Giving Access

This is arguably the foundational act of hacking; the other possibility, which has to do with

pranks, is part of the last of the eight actions. A thread that runs through popular, scholarly, and

personal accounts of being a hacker is the act of getting access: to computers, to

telecommunications systems, to knowledge, to source code, to tools, to the inner workings of

machines and networks, to accounts with escalated privileges, to secrets and classified

information. This thread is everywhere intertwined with giving access: with sharing, circulating,

 3

and further distributing one's access - providing passwords, how-to guides, commented code,

phone numbers, files, specs, standards, and specialized screwdrivers and spatulas for getting

inside the cases and containers of the technology.

Many seemingly disparate elements that are recognizably part of hacker culture come together in

this fundamental action. The first point of Steven Levy's summary of the ‘hacker ethic’ as he

described it in the early days of hacking at the Massachusetts Institute of Technology (MIT) is:

‘Access to computers - and anything which might teach you something about the way the world

works - should be unlimited and total. Always yield to the Hands-on Imperative!’ (Levy 1984:

28). As with all of the entries in our vocabulary of hacker action, getting and giving access fuses

abstract beliefs with practical goals and activities (see also Thomas 2006 on hackers and getting

access to secrets). The hands-on imperative can explain the popularity of locksport - competitive

lock-picking - in the hacker community. One of the liveliest corners of the biannual Hackers On

Planet Earth conference is the area devoted to picking locks, where participants can get training

and face challenges from padlocks to an entire payphone (personal observation). Locks are very

sophisticated technological puzzles - riddles in manufactured form - that reward cleverness,

persistence, logical problem-solving, and focus; they also happened to often prevent access to

computers, telephone equipment, and other interesting gear. The same nascent hackers interested

in picking locks in the 1970s were also interested in the pre-Internet Bulletin Board System

(BBS), where ‘discourses and texts about hacking were ubiquitous’ (Coleman 2013: 30; see also

Driscoll 2016). BBSs were likewise about getting and giving access: to information, including

information about getting further information, with the fundamentals of hacking into remote

systems, phone numbers for other more distant BBSs, typed-up samizdat textfiles of science

 4

fiction stories and conspiracy documents - and instructions in lockpicking. For the subculture of

phone phreaks (Lapsley 2013) - another fecund space for what hacking would become - the

practical benefit of free long-distance phone calls, which enabled ‘party line’ communities to

form among far-flung proto-hackers, was secondary to the act of getting access, not just to the

phone network itself but to knowledge about it: they knew AT&T's system even better than her

own engineers.

This fundamental action had an essential moral dimension (Coleman puts it in the context of the

political history of liberalism [2013: 116-122]): from access, from the hands-on imperative, came

knowledge and understanding - and with them, the responsibility of sharing knowledge with

others in turn even if one faces legal consequences for doing so. One of the foundational objects

of hacker inquiry, the Unix operating system (‘our Gilgamesh epic,’ Neal Stephenson called it in

his essay on hackers and the design of operating systems [1999: 88]), was the property of Bell

Labs. It circulated through generations of photocopies of an educational commentary on the

source code: Lions’ Commentary on UNIX, very likely the most copied book in the history of

computer science - you would make one copy for yourself, and another for your friends (Lions

1977) (Unix and the work of giving access will come up again below, in ‘Commoning’, in the

context of free, libre, and open source software.). The act, and the conviction, of giving and

getting access has far-reaching consequences; it can be found even in very early and hacker-

adjacent documents and projects, like the Whole Earth Catalog and the cyberculture movement

chronicled by Fred Turner, which was premised on ‘access to tools’ (Turner 2008: 81). It appears

in latter-day initiatives, like the One Laptop Per Child (OLPC) project, which sought to

manufacture a cheap laptop whose design - built for tinkering and creating one's own software in

 5

an open-source framework - was explicitly meant to foster a new generation of hackers. Begun at

MIT, like the word ‘hacking’ itself, it was a vision, combining hubris and altruism: that giving

access was all you needed to start children on the path to hacking.

Tinkering and Reverse Engineering

The OLPC was a dream of giving access: not only to computing as such, or some suite of

applications, or the Internet, but to a machine that invited tinkering. This is the second of the

eight parts of the hacker vocabulary, and one that can be described more briefly than the first. It

is two faces of the same phenomenon, a hands-on facet of getting access: the drive to take apart,

to fiddle, to modify, to take pre-existing technologies and figure out how they work and how

they can be made to work differently. It is a category of action we can partially observe in

negative, through all the components developed and deployed by manufacturers and corporations

to keep people out. The hacker drive to tinker and reverse engineer, particularly with electronics

and digital technologies, is reflected in the prevalence of esoteric screws - pentalobe,

hexaloblular - glued-down (rather than screwed-in) panels, holographic tape and other ‘tamper-

evident’ details, warnings of ‘no user-serviceable parts inside’, nonstandard connectors and

proprietary drivers, and encrypting the traffic between chips on a device. Whether used to protect

a digital rights management (DRM) scheme to control the circulation of content, or to prevent

competitors from cheaply duplicating a device, hackers often take these components as an affront

and a challenge. What could be more interesting than out-thinking an entire company's worth of

engineers and security specialists?

 6

Bunnie Huang is one of the preeminent examples of this area of hacker activity: among other

exploits, he famously hacked the Microsoft Xbox - figuring out and unlocking how it secured its

internal communications - and has produced close analysis of the vulnerabilities of digital

storage systems like microSD cards. ‘Without the right to tinker and explore,’ Huang wrote, ‘we

risk becoming enslaved by technology; and the more we exercise the right to hack, the harder it

will be to take that right away’ (2013: np). Huang makes clear throughout his work how

intertwined these two activities are. Many hacker stories begin with tinkering, trying to fix some

minor problem, or get a device or program to do what it wasn't exactly built to do, and in pursuit

of that goal end up reverse engineering the whole of the object's operations; others involve a

massive project of ‘undesigning’ and reverse engineering some elaborate apparatus so it can be

playfully tinkered with. The tinkering can sometimes be for the sake of straightforward goals,

like ‘overclocking’, making chips and computing architectures deliver faster and more powerful

performance than their specifications suggest. But often it can be for more quixotic goals -

complex for the sake of being complex, impressing other hackers who understand how

demanding such a trick was to pull off. A classic example of the latter is getting the classic video

game Doom running on some ridiculously inappropriate and unlikely platform: on a Kodak

digital camera from the early 2000s, an ATM, a seatback in-flight entertainment system, the

screen of an MP3 player, even a printer’s display.

To take a light-hearted example, consider hacker Natalie Silvanovich, who has done a series of

in-depth projects to document and completely understand tamagotchis - yes, the keychain-sized

‘artificial pets’ that live on LCD screens, fed and pampered through a few buttons (Silvanovich

nd). Silvanovich's reverse engineering efforts including using nitric acid, microscopes, ROM

 7

dumps, and painstaking analysis to access and decode the tamagotchi hardware and software to

‘answer the “deeper questions” of Tamagotchi life.’ Her project entails applying a full toolkit

(literally and figuratively) of hacker training and techniques to a deliberately fun and silly goal -

but one with serious implications, a part of the cultural continuity of hacking, from the phone

phreaks mapping out Bell Telephone's network to the people who got Linux running on the

Nintendo Switch handheld gaming console earlier this year (Julie Cohen has analyzed the

question of a limited right to self-help this raises: ‘freedom to tinker,’ or ‘the right to hack.’

[2012: 219]). To be able to reverse engineer, and to open devices and systems to tinkering, is to

expand the spaces where hackers can take action and where future hackers will emerge.

Recursive Tooling

Bunnie Huang has also worked as a manufacturer, focusing on producing ‘open hardware’

products which encourage their own user modification, reinvention, and development. One of the

best examples of this kind of product, Huang's Novena laptop, leads us into the third part of the

hacker vocabulary of actions: the reflective project of making the tools you need to make the

tools you need for the creation, modification, and tinkering you want to do. Where most laptops

are sealed and inaccessible to the user, Huang's is an open box of components: to tilt the screen,

you have to expose all the internals. To get it to do anything you have to install parts and an

operating system and figure out how to get the components to interoperate: to get to the stage

where you could, for instance, compose an email, you would have to develop expertise and

install the systems to get the box on the Internet with a working mail client; to get it on the

Internet, you would have to get the operating system transmitting over an antenna or an Ethernet

jack; to get the operating system working ... and so on. A recurring theme in hacker stories is a

 8

breakthrough that happened in the course of trying to develop better tools for some other

purpose, whether an improved programming language, a versioning system to reconcile different

parts of a project, or a whole operating system, in the case of Unix, created with an eye to

making the creation of future tools faster and easier.

Like tinkering and reverse engineering, this element of the hacker approach has both smaller

everyday and larger abstract aspects. Recursive tooling appears as jokes in the hacker lexicon

around things like ‘yak-shaving’: ‘some stupid, fiddly little task that bears no obvious

relationship to what you’re supposed to be working on, but yet a chain of twelve causal relations

links what you're doing to the original meta-task’ (Brown 2000). You started out trying to update

a dependency and ended up learning a new programming language. The legendary computer

scientist Donald Knuth, for instance - adopted as a hacker patron saint - became frustrated at the

inferior quality of the typesetting and design tools available for publishing his work in the 1970s.

He ended up creating a complete, immensely complex layout system, TeX, which became the

basis for LaTeX, the default standard for mathematical notation and publishing in the sciences to

this day (Knuth 1986). In classic yak-shaving style, to get TeX to work, Knuth developed not

only his own programming language for it, by an entirely new theory of how programming could

work - and a custom digital font, still in wide use.

On a broader scale, recursive tooling appears as the political arrangement Christopher Kelty

identified as the recursive public: ‘this kind of public includes the activities of making,

maintaining, and modifying software and networks, as well as the more conventional discourse

that is thereby enabled ... [a] series of technical and legal layers - from applications to protocols

 9

to the physical infrastructures of waves and wires - that are the subject of this making,

maintaining, and modifying’ (Kelty 2008: 29) He continues: ‘[G]eeks use technology as a kind

of argument, for a specific kind of order: they argue about technology, but they also argue

through it. ... They express ideas, but they also express infrastructures through which ideas can

be expressed (and circulated) in new ways’ (ibid). Hackers understand themselves as larger

communities in terms of the tools that enable their communities, tools they themselves design,

develop, and deploy. Arguments over a messaging or versioning system or the software of a

mailing list can work on several levels at once: personal, political, technical, infrastructural. The

hacker activity of recursive tooling also plays out as the hacker community of the recursive

public.

Commoning

Of course, it also plays out in the question of whether and how to circulate and share those tools.

Kelty (2008) was writing about the Free Software movement, as was Coleman (2013, 2014),

earlier. It is a source of considerable public and scholarly interest: a new way of making things,

social and technical at once, that Yochai Benkler terms ‘commons-based peer production’.

Benkler summarizes the idea of a commons: ‘a particular institutional form of structuring the

rights to access, use, and control resources ... [R]esources governed by commons may be used or

disposed of by anyone among some (more or less well-defined) number of persons, under rules

that may range from “anything goes” to quite crisply articulated formal rules that are effectively

enforced’ (Benkler 2006: 61). I want to identify ‘commoning’ as a particular form of action

we’ve seen before in this chapter and will see again. In its most general, generic form, this is

another facet of getting and giving access (Johns 2009: 463-496). Often what is being put into

 10

commons is the information necessary for tinkering or developing one’s own tools - or

information that is being leaked or exposed, as will be discussed below. Commoning is distinct,

however, as the most conceptually rigorous version of this related set of actions. In a sense it is

the most meta-level kind of recursive tooling, creating a legal, political, economic, and cultural

environment as well as a set of technical tools for formalizing the getting and giving of access.

Commoning, then, is a verb that takes us beyond giving or sharing. Dumping a bunch of digital

media into some online repository is not commoning, as such. Commoning is making use of

things like the GNU Public License (GPL), ‘copyleft’ provisions, Creative Commons licenses,

and other open source frameworks. (If you are reading this digitally, the screen you read it on

very likely includes some of these frameworks somewhere in its software). Commoning is, more

tangentially, the creation of open data, open access, open publishing, open hardware, and open

standards. Commoning is engagement in ongoing debate about what one means by these very

terms: ‘open’ or ‘free’ as in whether you have to pay, or whether you can do anything you want?

As in transparency? As in having to participate in the commons in turn, with what you produce?

‘Open’ as a canny business decision, or as a philosophical commitment to a specific

understanding of knowledge and society? Android, the mobile phone operating system initially

produced by Google, exemplifies the former; Richard Stallman, founder of the Free Software

Movement, who exemplifies the latter, described putting together a collection of free software

necessities ‘[s]o that I can continue to use computers without dishonor ... I refuse to break

solidarity with other users’ (Stallman 1985). Rational, righteous, or both?

 11

As with the other components of hacker action, commoning can cover many degrees of action

for an array of goals. One can engage in commoning by posting a picture under a Creative

Commons license, by making a contribution to a free/libre/open source project, by running Linux

or teaching others to use it, by designing and manufacturing an open source piece of hardware

which can become the basis for other devices (like the famous Arduino platform), by sharing

exfiltrated data with the public for a specific end, by engaging in what Aaron Swartz called

‘guerilla open access,’ moving large bodies of knowledge into the commons even if the project is

unsanctioned, or illegal: ‘We need to take information, wherever it is stored, make our copies

and share them with the world’ (Swartz 2008). (Swartz faced disproportionate legal penalties for

his guerilla open access downloading of a massive set of academic journal articles, leading to his

suicide in 2013.)

This final aspect of commoning has taken on a new significance in the last decade and a half as

more and more social and political institutions have moved their operations online. There were

prior cases of hacking for disclosure - to share concealed information - but the formal role the

hacker occupies as whistleblower has changed: ‘the politically engaged geek family continues to

grow - in size and significance,’ wrote Coleman in her study of Anonymous (Coleman 2014:

382). Edward Snowden’s release of NSA materials to journalists, the creation of the WikiLeaks

model by Julian Assange and his collaborators for online publication, the attacks on Sony’s

movie division and the Ashley Madison site by unknown hacker teams - both of which involved

dumping massive caches of documents online for the public to comb through - suggest the scale

of this transformation in what it can mean to be a ‘hacker’. As Benkler explains in his study of

the release of emails related to vulnerabilities in the Diebold company's voting machines,

 12

hacking as commoning creates its own infrastructure of sharing, including ‘the initial

observations of the whistle-blower or the hacker; the materials made available on a “see for

yourself” and “come analyze this and share your insights” model; the distribution by students;

and the fallback option when their server was shut down of replication around the network’

(Benkler 2006: 262).

As even this brief list suggests, the act of commoning can take place in a mix legally sanctioned

frameworks (themselves often the product of hackers and lawyers and journalists formalizing

hacker commitments), or as appeals to a higher moral authority: Stallman’s ‘solidarity,’ Swartz’s

call for informational ‘justice’. Finally, like many of the actions outlined here, commoning is

reciprocal, to do with both giving and getting - one puts things into the commons, but also draws

on them: the other part of Benkler’s ‘commons-based peer production’. This brings us back to

tools, hardware, and software. You need components and data offering the kind of privileges that

commoned objects do in order to make many hacker things. What kind of making - what kind of

production, what kind of labor - needs that level of access?

Making Nonstandard Things

McKenzie Wark identified what he called ‘the hacker class’ as a way to talk about two things.

The first was a larger question he identified as ‘the nature of information itself as something

inimical to property and necessarily existing only as something shared’ (2017: 306). It is an issue

that should feel familiar to us now as a part of the toolkit of hacker action, a question that builds

on his earlier Hacker Manifesto (Wark 2004). The second was to have a way to talk about the

people engaged in ‘(non-)labor practices that make nonstandard things,’ ‘new things’ (2017: 9).

 13

There are many aspects of this idea, including the very hacker-ish question of the blurring

between labor and play, experiment, art, science, and performance (see the next action), with

implications for how we discuss issues from compensation, to economics, to unionization in the

tech industry (see also Scholz [ed.] 2012, Liu 2004, Neff 2015).

However, I would like to highlight a different aspect of the fifth of the eight hacker actions: a

culture of craft, with a specific aesthetic - one that connects the previous set actions with the one

that follows below. While their work may have widespread effects, appearing in templates,

libraries, dependencies, and other widely reproduced, standardized formats and components, a

hallmark of hacker production is ‘nonstandard things’: bespoke tools and products, modified

versions, idiosyncratic designs, one-off fixes and solutions whether elegant or crude. As hacker

Rodney Folz put it, ‘We do things that don’t scale. It’s in our blood’ (Folz 2015). That last thing,

the ugly but effective and expedient fix to an immediate problem, even has its own hacker

jargon: a ‘kludge’ - ‘an improvised, spontaneous, seat-of-the-pants way of getting something

done,’ as Lisa Nakamura put it, which was sometimes also called a ‘hack’ in the early days of the

term (Nakamura 2006: 318). As the specialized terminology suggests, these kinds of fixes are

commonplace, in the spirit of tinkering and developing one's own tools: sometimes the goal

might be logical, clean-slate perfection (a recurring hacker temptation) but more often is just to

get something working well enough for now.

This nonstandard making can be seen in many aspects of hacker labor but I’ll mention two that I

believe to be particularly pertinent. The first is in comments and documentation for code. These

written materials are intended to provide guidance to the person who is using, reviewing, or

 14

modifying the code. They can include text explaining a program and its commands - like the

pages one receives for a ‘man’ (for ‘manual’) request in the Unix or Linux command line - and

text written into the program itself, bracketed out so the computer won't try to interpret or

execute it, and the human can read it. One would assume that such technical documentation

would be dry, impersonal, the expression of a standardized approach to a standardized product -

akin to the owner's and mechanic's manuals printed for cars, for instance, a canonical

standardized assembly-line machine. But hacker documentation is a textual culture of its own,

delightfully personal, sometimes sardonic, frustrated, or gnomic, filled with in-jokes and

reflections on the work itself. Sometimes documentation and comments are agreeably ragged:

admitting the code could be better, noting an unfinished feature, an experiment that never panned

out, a kludgy fix that the programmer will come back to one day. Sometimes they reflect pride in

craft - including the warning not to mess with part of a design that you probably don't

understand. (Coleman has written extensively about the culture of commented code [2013: 100-

120].) Famously, Lions' Commentary on UNIX included a comment on a very weird mechanism

on line 2238: ‘You are not expected to understand this.’ Though meant as ‘this won't be on the

test,’ it was often interpreted and playfully riffed on in other code as a challenge -- ‘don't even

try.’ The page of text you get for ‘man rsh,’ the manual for a Unix program, includes this

explanatory line for a command: ‘this is arguably wrong, but currently hard to fix for reasons too

complicated to explain here.’ These kinds of notes reflect code that is made by people in

personal, inventive, nonstandard, crafty ways - one stitch at a time - and code made with the

expectation it will be tinkered with, studied, and further modified.

 15

The second, which I will touch on only briefly, is how hacker production often happens: using

heavily modified, nonstandard systems and environments. This is closely related to the activity

of recursive tooling, making the tools with which to make the tools. A classic hacker rite of

passage is not just installing an open source operating system, but installing that system and then

modifying it until it breaks, and then fixing it again. From choosing window managers to

customizing text editors to remapping keyboards, nonstandard objects are made with

nonstandard tools: a minor but telling detail of hacker life is developing and sharing one's own

‘dotfiles’, the configuration files normally hidden from the user, with which you can specify your

own preferences for how work is done. Over time, each hacker's production environment will

become unique, engineered for their particular, nonstandard practices.

Performing Virtuosity

One consequence of making nonstandard objects is that there are individual creators and

craftspeople and groups to be celebrated (or castigated) - rather than anonymous systems where

interchangeable human crank out interchangeable parts. The questions of attribution and

authorship in hacker production are much more complex that we can cover here, but through

them runs another distinct form of hacker action: the performance of virtuosity - in some cases

for functional ends, as with a brilliant fix, but often as an end in itself, to be appreciated by other

hackers who can understand what you've accomplished. This goes back to the tricks pulled off

by phone phreaks, like routing calls from relay to relay, across the phone network, around the

world. This served no functional purpose - in the sense of getting free long distance, for instance

- but was instead a trick that demonstrated extraordinary technical competence: the legendary

phone phreak Captain Crunch would set it up to route a call from one handset around the world

 16

to another handset in the same room, putting his voice on a planet-size time delay (Rosenbaum

1977).

This is the purest expression of the making of nonstandard things, the least inflected by the

quotidian demands of industries, managers, and end-users, and a crucial action in the hacker

lexicon: the performance of technical virtuosity more or less for its own sake. Such

accomplishments don't just garner prestige; they reflect a larger community that can admire the

extreme difficulty (often self-imposed), and deep insight into the technologies and tools that they

reflect. Hackers dub themselves and one another as ‘wizards,’ ‘Jedi,’ and ‘ninjas,’ all groups

whose membership is limited by very demanding thresholds of dedication, training, and skill.

(Much has been made in geek discussion of how the Jedi from the Star Wars universe mark their

progress in training by making their own lightsabers from scratch - a cultural fantasy of recursive

tooling if ever there was one [Brunton 2013: 18].) Understanding the implications of this

virtuosity is likewise limited to those in the know.

In fact, one of the most extreme expressions of the hacker performance of virtuosity produces the

least impressive result: a program that outputs the string ‘Hello, world’ or various other

traditional phrases, like ‘Just another Perl hacker,’. (The comma is traditional.) To write a

command that will return this result is the most basic, introductory act of many computer

language lessons. The goal of hacker virtuosity is to produce it using the most mind-smashingly

opaque, complex, counterintuitive means, which other hackers will delight in picking apart and

trying to understand, for events like the International Obfuscated C Code Contest. There are

numerous contests for different languages, as well as ‘esoteric’ languages designed to be

 17

challenges in themselves, like Brainfuck, Grass - whose code, built entirely from ‘W,’ ‘w,’ and

‘v,’ looks like grass - and Malbolge, named for the eighth circle of Hell. (The related

phenomenon of the ‘demoscene’ seeks to produce visual and sonic performances out of

deliberately constrained programming tools, sometimes pulling off astonishingly rich displays

out of only a few lines of exquisitely composed code; part of the pleasure of demoscene events is

understanding the ingenuity with which the effect was produced.) As Nick Monfort put it,

obfuscated code ‘darkens the usually “clear box” of source code into something that is difficult

to trace through and puzzle out, but by doing this, it makes code more enticing, inviting the

attention and close reading of programmers’ (Montfort 2009: 198; see also Mateas & Montfort,

2005). It speaks to the aesthetic and craft pleasures of hacking expressed as its own set of actions

and productions.

Policing and Defining Hackerdom

Of course, part of the activity around those demoscene competitions is to separate those who

really understand and appreciate the technological feats from those who don't, or who fail to

appreciate them on the appropriate level - a process of policing and defining the ‘elite’ and the

varieties of non-elite ‘lamers’. The seventh of the eight actions and the most self-referential will

also be the briefest to describe, because it is the least technically particular: a recurring activity in

the hacking community is discussion and debate over the meaning of ‘hacker’ itself - what are

the criteria, who really gets to be one, what you should be doing to qualify, and who has been

excluded.

 18

There are many debates and internal conversations to this question that lie beyond the brief scope

of our work here. A few brief examples will suffice. Eric S. Raymond, a notable open source

software developer (and author of the landmark open source development manifesto, The

Cathedral and the Bazaar) maintains a lengthy document for those who have written to him

seeking to develop ‘wizardly hacker’ expertise: ‘How to Become a Hacker’ (Raymond nd).

‘Hackers build things,’ he writes, and provides a blend of mindsets (‘No problem should ever

have to be solved twice’), particular skills and tools (‘Get one of the open-source Unixes and

learn to use and run it’), and social capital (‘Help test and debug open-source software’). This

document, periodically expanded and refined since 1996, perfectly exemplifies a particular

hacker type - outside the formal recommendations, Raymond advocates for other practices to

find one's way more easily in the hacker scene, like reading science fiction and cultivating a

fondness for puns. Raymond subsequently disgraced himself with increasingly bizarre,

conspiratorial, racist and misogynist personal positions which in retrospect colored this

document. It implied another requirement to be a hacker in some circles, unstated but seemingly

evident: to be an abrasive but thin-skinned, competent but deeply insecure, white guy who likes

arguing on the Internet, and assumes other hackers must be more or less like him. The

‘flamewar’ culture of name-calling, abuse, and insults, and the casual sexism and racism, which

result from this culture have killed many an open-source project, or reduced it to only the most

high-blood-pressure personalities - who are not necessarily the best developers.

In contrast to this, a wave of new groups, events (including hackathons and workshops) and

publications are explicitly trying to renegotiate who gets to be called a hacker and what a hacker

is assumed to be. The !!Con, for example, tries to foster not only a more diverse array of hackers,

 19

but also a different culture of hacker engagement - one that is less language and platform

focused, and instead emphasizes ‘the joy, excitement, and surprise of programming,’ an ethos in

many ways much closer to the historical roots of hacking as a vocation than the intensely

monetized, product-first, overworked-at-a-big-company approach that characterizes the hacker in

contexts like Silicon Valley today. Sumana Harihareswara describes !!Con's breadth of technical

and engineering talks as an assumption: ‘every attendee has the capability of being curious about

everything’ (Harihareswara 2016). Or, as Raymond phrased the first requirement for being a

hacker almost twenty years earlier, you must believe that ‘the world is full of fascinating

problems waiting to be solved’ (Raymond nd).

Social Engineering

This final entry in the hacker vocabulary of actions echoes the earliest days of hacking, but has a

new contemporary resonance. With it, we close the loop and conclude this chapter: from the

earliest pranks and collegiate ‘hacks’ to the discussion around ‘hacking the election’ in the

United States and other countries over the last two years - and future mutations of the term

‘hacking’ and the actions that constitute it.

The earliest ‘hacks’ identified with that verb were often in the service of sophisticated, complex

pranks: the technological ingenuity and access needed to surreptitiously put a car on top of the

Great Dome of MIT, or inflate a weather balloon at the fifty-yard-line in the middle of a football

game. Pulling off these pranks often involved not only material engineering, but ‘social

engineering’: a security-focused version of confidence trickery (Peterson 2003). Larry Wall, the

legendary developer of the Perl programming language, said great programmers possess laziness,

 20

impatience, and hubris: they are wildly ambitious, but have no patience for what Eric Raymond's

guide to hacking terms ‘boredom and drudgery.’ This means that - along with automating away

repetitive tasks - hackers are always in search of the optimal, efficient shortcut around the

seemingly intractable problem. If getting access to a closed building or a phone network needs a

code, why not fast-talk someone with the password into giving it to you in a few minutes instead

of various time-consuming and perhaps unsuccessful technical approaches? One under-

recognized component of the hacker toolkit evolved from this: the accumulated lore of social

engineering, from interpersonal activities like cold-calling and looking over someone’s shoulder

as they type in a password (‘shoulder surfing’), to going through a company's trash (‘trashing’)

in search of useful intrusion information, to now-commonplace phishing emails that fool the

recipient into logging into an account and thereby giving up a password.

It was a phishing attack that originally gained access to the email account belonging to John

Podesta, the chairman of Hillary Clinton's 2016 presidential campaign. The emails, subsequently

published on WikiLeaks, played a part (their exact consequences still debated) in the failure of

the Clinton campaign and the election of Donald Trump, along with the likewise uncertain effect

of social network manipulation through bots and the circulation of false stories and images. This

has been widely referred to in the American media as ‘hacking’ the election, though, arguably,

the only part that resembles the history of hacking to this point was the acquisition and leak of

the Podesta emails. But it raises a useful question for us: the popular meaning of ‘hacking’

continues to evolve. Social engineering has always been a part of hacking, back to the phone

phreaks getting access to Ma Bell's network and proto-hackers finagling parts and computing

system time from their universities and institutions. Etymologically, many of the earliest projects

 21

of ‘hackers’ getting and giving access were in the service of stunts and pranks. Can this be

plausibly explained as a single, coherent thread in the history of hacking that began to blur into

the space of trolling, doxxing, Rita Raley's ‘tactical media,’ and prankish weirdness that has

become a vector for political disruption - ‘social engineering’ on a much larger scale? (Raley

2009; see also Phillips 2015, Coleman 2014) At what point does the expansion of the concept of

hacking become meaningless?

I hope this chapter has demonstrated that the answer to these contemporary questions lies not in

an abstract definition or redefinition, but in studying the particulars of actions that the people

involved think of as ‘hacking’. Will a distinct, new category of action be added to this

collection? Will one of these forms of activity drop away as a salient part of the spectrum of

hacking? Getting and giving access; tinkering and reverse engineering; recursive tooling;

commoning; making nonstandard things; performing virtuosity; policing and defining

hackerdom; social engineering: the eight forms of action described here will change in their

subjects and implications, but their continuity throughout the history and transformations of

hacking so far argues for their persistence in the future, as components in a technologically

specific way of living and working.

References

Benkler, Yochai. 2006. The Wealth of Networks: How Social Production Transforms Markets

and Freedom. Yale University Press

Brown, Jeremy. 2000. ‘Yak-Shaving.’ Available at: http://www.mit.edu/~xela/yakshaving.html

Brunton, Finn. 2013. Spam: A Shadow History of the Internet. MIT Press

 22

Cohen, Julie. 2012. Configuring the Networked Self: Law, Code, and the Play of Everyday

Practice. Yale University Press

Coleman, Gabriella. 2013. Coding Freedom: The Ethics and Aesthetics of Hacking. Princeton

University Press

Coleman, Gabriella. 2014. Hacker, Hoaxer, Whistleblower, Spy: The Many Faces of Anonymous.

Verso

Driscoll, Kevin. 2016. ‘Social Media’s Dial-up Roots.’ IEEE Spectrum 53, no. 11 (November

2016): 54–60

Folz, Rodney. 2015. ‘Selling Out and the Death of Hacker Culture.’ Available at:

https://medium.com/@folz/selling-out-and-the-death-of-hacker-culture-fec1f101b138

Harihareswara, Sumana. 2016. ‘Towards a !!Con Aesthetic.’ The Recompiler. Available at

https://recompilermag.com/issues/extras/toward-a-bangbangcon-aesthetic/

Huang, Bunnie. 2013. Hacking the Xbox: An Introduction to Reverse Engineering. No Starch

Johns, Adrian. 2009. Piracy: The Intellectual Property Wars from Gutenberg to Gates.

University of Chicago Press

Lapsley, Phil. 2013. Exploding the Phone: The Untold Story of the Teenagers and Outlaws Who

Hacked Ma Bell. Grove Press

Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution.

Anchor/Doubleday

Lions, John. 1977. Lions' Commentary on Unix 6th Edition with Source Code. Peer to Peer

Communications

Liu, Alan. 2004. The Laws of Cool: Knowledge Work and the Culture of Information. University

of Chicago Press

 23

Kelty, Chris. 2008. Two Bits: The Cultural Significance of Free Software. Duke University Press

Knuth, Donald. 1986. Computers & Typesetting, Volume A: The TeXbook. Addison-

Wesley

Mateas, Michael and Nick Montfort. 2005 ‘A Box, Darkly: Obfuscation, Weird

Languages, and Code Aesthetics.’ In Proceedings of the 6th Digital Arts and Culture

Conference, IT University of Copenhagen, 1-3 Dec 2005

Montfort, Nick. 2009. ‘Obfuscated Code.’ In Software Studies: A Lexicon (Matthew

Fuller, ed.). MIT Press

Nakamura, Lisa. 2006. ‘Cybertyping and the Work of Race in the Age of Digital Reproduction.’

In New Media, Old Media: A History and Theory Reader (Chun and Keenan, eds.). Routledge

Neff, Gina. 2015. Venture Labor: Work and the Burden of Risk in Innovative Industries. MIT

Press

Peterson, T.F. 2003. Nightwork: A History of Hacks and Pranks at MIT. MIT Press

Phillips, Whitney. 2015. This Is Why We Can't Have Nice Things: Mapping the Relationship

between Online Trolling and Mainstream Culture. MIT Press

Raley, Rita. 2009. Tactical Media. University of Minnesota Press

Raymond, Eric S. No date (ongoing). ‘How To Become A Hacker.’ Available at:

http://www.catb.org/~esr/faqs/hacker-howto.html

Rosenbaum, Ron. ‘Secrets of the Little Blue Box.’ Esquire Magazine, October 1971. Available

at: http://classic.esquire.com/secrets-of-the-blue-box/

Scholz, Trebor (ed.). 2012. Digital Labor: The Internet as Playground and Factory. Routledge

Silvanovich, Natalie. No date. ‘Many Tamagotchis Were Harmed in Making This Presentation.’

Available at: http://natashenka.ca

 24

Stallman, Richard. 1985. ‘The GNU Manifesto.’ Available at:

https://www.gnu.org/gnu/manifesto.en.html

Stephenson, Neal. 1999. In the Beginning Was the Command Line. Avon Books

Swartz, Aaron. 2008. ‘Guerilla Open Access Manifesto.’ Available at:

https://archive.org/stream/GuerillaOpenAccessManifesto/Goamjuly2008_djvu.txt

Thomas, Douglas. 2006. Hacker Culture. University of Minnesota

Turner, Fred. 2003. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth

Network, and the Rise of Digital Utopianism. University of Chicago Press

Wark, McKenzie. 2004. A Hacker Manifesto. Harvard University Press

Wark, McKenzie. 2017. General Intellects: Twenty-One Thinkers for the Twenty-First Century.

Verso

Zuckerberg, Mark. 2012. ‘Mark Zuckerberg's Letter to Investors: “The Hacker Way.”’ Wired.

[online] Available at: https://www.wired.com/2012/02/zuck-letter/

